
2 0 
(i - ~=) + T -Go ~w (i - ~') w,,(~) = 2 

<w> 40 
1+T-Go *w 

These data permit investigating heat transfer taking account of the new complex eTw/~o~ 
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SELF-SIMILAR PROBLEMS OF TURBULENT MIXING AT THE INTERFACE OF COMPRESSIBLE GASES* 

V. E. Neuvazhaev UDC 232.517.4 

INTRODUCTION 

It is well known that the interface of liquids or gases located in a field of gravity 
breaks down if a heavy substance is located above a light one. An analogous picture arises 
in the absence of a gravity field, if the light substance accelerates the heavy one. The 
theory of turbulent mixing and the corresponding self-similar solution for incompressible 
liquids are constructed in [i]. 

For some self-similar problems in gasdynamics there arise conditions leading to turbu- 
lent mixing. In the present work, solutions are constructed taking account of turbulent mix- 
ing. The article discusses the problem of the motion of two originally cold gases, in one of 
which there is given a rising evolution of energy, varying in accordance with a power or ex- 
ponential law. In a self-similar solution at an interface, moving with an acceleration, there 
appears a discontinuity of the density: a shock wave enters the cold gas, leaving behind it 
a high (at the interface, infinite) density, while a rarefaction wave is propagated into the 
energy-evolving gas. The interface is obviously unstable, i.e., the light substance acceler- 
ates the heavy one. For this problem, a solution is constructed taking account of turbulent 
mixing. 

The article considers the motion of a gas under the action of an applied pressure, ris- 
ing either stepwise or exponentially. The surface of the gas, to which the pressure is ap- 
plied, is free. Such a piston can be obtained where, in a vacuum, the pressure is given (for 
example, of light). A free surface is unstable with respect to small perturbations. In dis- 
tinction from known self-similar solutions [2, 3], the solution obtained with turbulent mixing 

*Presented at the Fifth All-Union Seminar on Analytical Methods in Gasdynamics, Makhachkala, 
July, 1974. 
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has an appreciably different distribution of the density and the entropy. The maximal value 
of the density in a shock wave is attained either at the front or behind the front, but not 
in the piston, as in a solution without mixing. A minimal, zero, value of the density is at- 
tained in a motionless piston. 

A shock wave, taking account of mixing, moves with a greater velocity than in the case 
with mixing. The construction of self-similar solutions with turbulent mixing depends on a 
constant, determined from experiment. In the examples given below, this constant was borrowed 
from [i]. Its final choice for a given type of problem can be made by setting up an appro- 
priate experiment~ 

I. Statement of the Problem with Evolution of Energy. Let the coordinate plane x = 0 
be the interface between cold quiescent gases with different initial densities and different 
equations of state: 

0 P == 91; P --= A19T, ~ : B1T with x <  0, 
o 9 :  fl'-';P = :A.,pT, s :=B.,T with x ~ O ;  

u(o,  x )  = O, T(~,, .~,) = (.), 

where 0 is the density; T is the temperature; p is the pressure; e is the internal energy; 
u is the velocity; A:, A2, B~, B2 are constants; and the subscript i relates to the left- 
hand region and 2, to the right-hand region. 

In the region x > xo(t) [Xo(t) is the trajectory of the interface], in unit mass the 
evolution of energy is given 

{~ x>~x~ 
s~  ~F~ = x < x . ( t ) ;  

Fo and  n a r e  p o s i t i v e  c o n s t a n t s .  

The e q u a t i o n s  o f  g a s d y n a m i c s  i n  E u l e r  v a r i a b l e s  h a v e  t h e  fo rm 

p(Ou/Ot -I uOu/Ox) ~I- Op/Ox = O; (1.1) 

O9/Ot - F - O ( 9 u ) / O x  = O; ( 1 . 2 )  

O(e -i--u2/2)/Ot -i uO(e -!-u~/2)/Ox -!-(t l9)8(pu)/Ox = O%/Ot + uO%/Ox. ( 1 . 3 )  

The boundary conditions must be the following: to the left of the energy-evolving re- 
gion there arises a strong shock wave (Fig. i, where I is the front of the shock wave, 2 is 
the boundary of the mixing region, 3 is the contact boundary, 4 is the energy-evolving re- 
gion, and 5 is the rarefaction front): 

~'h --l- i )0 . 2 2 U ,  
P3 : ~ ~ 1, Pa ~'1-1- 1 9~ ua - ~,~ + I 

where Yz = I+Az/B,; Uis the rate of propagation of the shock wave. To the right~ along the en- 

ergy-evolving gas, with the sonic velocity 7y2p2/p2 ~ there moves a rarefaction wave, at 
whose front 

At t h e  c o n t a c t  b o u n d a r y  x = x o ( t ) ,  t h e  c o n d i t i o n s  o f  c o n t i n u i t y  o f  t h e  p r e s s u r e  and  t h e  
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velocity are fulfilled: 

P-o ---- P+o, U-o = U+o. 

The problem posed is self-similar. If we introduce dimensionless variables according 
to the formulas 

---- [(n + 2)/2l(B.,./A~.Fo)'/~ ~+",'~ u = (A2Fo/B2)~/~F~/~(~.), 

p ~-= p~5 (~.), T . . :  (Fo/B2) trio (~.), p =: Ao (Fo/B2)t ,vr  (k),  
(1.4) 

then Eqs. (i.i)-(1.3), after the substitution of (1.4) into them, reduce to a system of or- 
dinary differential equations: 

' ! 

N - - n / ( n - i - 2 ) ,  5[N~ i - ( ~  ~)~'l a = 0 ;  

( ~ -  ~ ) ~ ,  = ~,; 

2Nvt/(? -- 1) = 2N(~~ -] 0/(y -- ~)) (~ -- Z) (~'-'/2 !- 0/(y -- 1))' 0~. 

I n  t h e  l a s t  e q u a t i o n ,  t h e  a d i a b a t i c  i n d e x  y t a k e s  on i t s  own v a l u e  i n  each  r e g i o n :  
7 = 7*; with p = i, y = 7~. 

form: 

(1.5) 

(1.6) 

(1.7) 

~=0, 

Correspondingly, the boundary conditions in self-similar variables have the following 

at the front of the shock wave (I = ~3), 

~a = V--7~--. t' ~3 = 12/(?~ + 1)] X~, ~a = [21(~ + l)]  ~.~; 

a t  t h e  f r o n t  o f  t h e  r a r e f a c t i o n  wave  (~ = ~ = r  

( l .8)  

0 0 
52 = p2/p~; ~ ~= O; n~ :: ~; 

and at the contact boundary (~ : %o), 

( l .9)  

~-0 = ~+0 = %0; ~-0 = ~+0- ( l . lO) 

If we assume that the energy evolution depends exponentially on the time: 

e = ~F0e~ t, 

then, introducing the corresponding dimensionless variables 

9 (~), 

�9 ~'2 ~  
we o b t a i n  a s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s ,  c o i n c z d x n g  w i t h  ( 1 . 3 )  i f ,  i n  t h e s e  
e q u a t i o n s ,  we s e t  N = 1. The b o u n d a r y  c o n d i t i o n s  a r e  r e t a i n e d  w i t h o u t  change .  

2. S t r u c t u r e  o f  S e l f - s i m i l a r  S o l u t i o n .  I n s t a b i l i t y  o f  C o n t a c t  Boundary .  The s y s t e m  
o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  ( 1 . 5 ) - ( 1 . 7 )  can be i n t e g r a t e d  n u m e r i c a l l y .  The known 
f r o n t  o f  t h e  r a r e f a c t i o n  wave t = h4 ( 1 . 9 )  f o r  t h e  s y s t e m  under  c o n s i d e r a t i o n  i s  a s i n g u l a r  
p o i n t .  Th i s  s i n g u l a r i t y  was i n v e s t i g a t e d  i n  i [ 4 ] .  Through t he  p o i n t  t h e r e  p a s s e s  a s i n g l e -  
p a r a m e t e r  f a m i l y  o f  i n t e g r a l  c u r v e s .  The i n t e g r a t i o n  can  be c a r r i e d  o u t  by a d j u s t m e n t :  s t a r t  
f rom t h e  r a r e f a c t i o n  f r o n t  t = ~4 ( u s i n g  an  e x p a n s i o n  w i t h  some v a l u e  o f  t h e  c o n s t a n t  c o ) ,  
c a r r y  i t  t o  t h e  c o n t a c t  b o u n d a r y  ~+o = ~o,  and t h e n  from th~ f r o n t  ' o f  t he  shock  wave t 3 t o  t he  
contact boundary. The value of ~3 is ~o~%4~%ected that, with I = Io, ~-o = ~+o. Here ~-o # 
~+o. Continuity of the dimensionless pressure is assured by the selection of the constant in 
the expansion Co. 

818  



The solution constructed in this manner will consist of two regions: a shock wave 
(heavy gas) and a rarefaction wave (light gas), separated by the contact boundary. The lat- 
ter plays the role of a piston. It is known from [2] that the density to the left of the boundary 
takes on an infinite value. Under these circumstances, the temperature reverts to zero. Since 
the index of self-similarity is positive (n > 0), the contact boundary moves in an acceler- 
ated manner. There arises the case where the light gas accelerates the heavy gas. The situ- 
ation is analogous to Rayleigh--Taylor instability. 

3. Turbulent Mixing. Theory and Equations. Instability of the contact boundary inevi- 
tably leads to turbulent mixing: a complex motion is formed, with one of the gases penetrat- 
ing into the other. In some cases, a quantitative description of such motions can be obtained 
by application of known semiempirical theories. 

The theory of turbulent mixing was constructed in [I] under the assumption of isother- 
micity. Its further development and generalization for the case of adiabatic motions are con" 
rained in [5]. 

The coefficient of turbulent diffusion and thermal conductivity is introduced:* 

D = Iv, ( 3 . 1 )  

where I is the characteristic turbulent length, connected with the width of the mixing region 
by the empirical constant a 

l = a L ;  ( 3 . 2 )  

v is some characteristic turbulent velocity, expressed approximately in terms of the profile 
of the sought solution by the formula from [5]: 

, : :   =lfg(O,nO/Ox+g/a o), (3.3) 

where g is the acceleration; ao is the velocity of sound; v = 0, if the expression under the 
square-root sign is negative; in this case the motion is stable. With a more exact discus- 
sion, for the turbulent velocity v the balance equation can be written 

(l /2)Opv~/Ot @ vpv3/ l  = 9 1 v ~ .  (3.4) 

Below a study is made of the simpler case where the time derivative in the left-hand part of 
(3.4) is neglected. Then instead of (3.4), we obtain (3.3). 

We denote the concentration of the active component in the mixture: 

c = 92/(P1 -~- 9"-) 

(Pl + P2 is the density of the mixture); we write an equation describing the change in the 
concentration; 

Oc/Ot @ uOc/Ox = ( l /9)O(9DOe/Ox)/Ox.  (3.5) 

In the region of the mixture, as in [5], the equations of state are determined using 
the formulas 

p = [AI( t  - -  c) -~ A.,_c]pT; e = [BI(J[ - -  c) -~- B2c]T ,  (3.6) 

where P and T are the density and temperature of the mixture. 

Finally, in the energy equation (1.3), it is necessary to add the turbulent thermal con- 
ductivity, i.e., the main dissipative mechanism leading to diffusion of the entropy and the 
density. In addition, the fact of mixing must'be taken into consideration in the energy- 
evolution term. Taking account of the above-listed factors, we have, 

*As in Russian original -- Publisher. 
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a u ~- u 0 t o t a pD + P - - T Z ,  
a--i e § 7 + az e §  -F --ff- -g-; p u  p Ox ~ , -  at , u ~ . ( 3 . 7 )  

To Eqs. (3.5)-(3.7) we add without change the equation of the conservation of motion (i.i) 
and the equation of continuity (1.2). Thus, we obtain a system of equations describing the 
motion of a gas caught up in turbulent mixing. 

4. Self-similar Character of Problem with Mixing. Examples. The new equations intro- 
duced (3.5), (3.7) retain the self-similarity discussed in Sec. 2. In actuality, the width 
of the mixing zone can be defined, for example, as the distance between the corresponding 

terms (see Fig. i, %x and ~=) at which the concentration c(%x) = 0 and c(%2) = i. Then, 

L = ~z., - -  xj = [2/(n -~- 2)l(A~,Fo/B,,)xf'-t(2~"),'"-(2~2 - -  ~,1); (4 .1)  

%x and ~= are as yet unknown. Substituting (1.4) into (3.5), (3.7), and taking account of 
(3.1)-(3.3) and the expression for the width L (4.1), we finally obtain two ordinary differ- 
ential equations 

2 N c / ~  - -  i) = 2 N O  4- ~2/2) -~ ( ;  - -  Z)(;V2 4- ~ '  §  - -  q)', 

q = ~ d [ O ' - - - ~ ( I n S ) ' - - c ' ] ;  ~ = [A~(I - -  c ) +  c]~;  

~ =  ( A , ~ - B , ) ( t - - c ) - b ( A ~ - - B ~ ) c .  ~ = [ B ,  B 2 ] 
" B t ( t+c)_~B2c  -~2(1 - -  C) + c O; ( 4 . 2 )  , 

- - T  (ln~)' i (m~)  , 
7 

6 c ' ( ;  - ~)  = ( ~ d O ' .  

These equations hold only in the mixing zone from ~ to ~2, where the coefficient d differs 
from zero. They go over into the original equations in regions where d = 0. 

Figures 2 and 3 give plotted self-similar profiles for yx = Y2 = 7/5, N = 0.5 and yx = 
y2 = 5/3, N = i. The initial density in both regions is assumed identical. It was found 
difficult to carry out numerical integration of the system of ordinary differential equations 
obtained. The difficulties arising with integration can be followed in the partial case ana- 
lyzed in Sec. 5. �9 the problem was solved in partial derivatives by the method of 
[5]. Here the difference grid with respect to the spatial variable was selected in such a 
way that values obtained from an increase in the number of points would vary only slightly 
(so that they would coincide graphically). For purposes of comparison, the same figures, by 
the dashed lines, show the solution without mixing. It can be seen from the curves that mix- 
ing considerably changed the density of the gas and led to a certain determinacy in the posi- 
tion of the front of the shock wave. 

5. The Problem of a Piston. Approximate Solution without Mixing. The problem of a 
piston with a given boundary pressure 

p = pot" ( 5 . 1 )  

can be regarded as a partial case of the problem of Sec. I, where the density of the energy- 
evolving layer p O § 0; under these circumstances, the temperature of the energy-evolving 
layer should approach ~ in such a way that relationship (5.1) will hold. The solution of 
this self-similar problem without mixing is known and was constructed in [2, 3]. Its struc- 
ture will coincide with the structure of the solution of the starting problem in the part 
where there is no energy evolution. The boundary with the vacuum, moving with acceleration 
toward the side of the substance, will obviously be unstable. Therefore, turbulent mixing 
must be taken into consideration. 

Turbulent mixing does not arise if the piston is realized using a solid wall. Numerical 
integration of the ordinary differential equations obtained can be simplified if, in the en- 
ergy equation, the derivative of the entropy function is replaced by 

Oln(p/pV)/ar~,Oln(l /pv)/Or.  
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This can be done on the basis of the fact that the change in the pressure takes place slowly 
compared with that of the density. 

The solution of the problem of a piston without mixing, in the proposed approximation, 
is obtained in analytical form, with the retention of the special characteristics of the 
exact solution (an infinite density and a zero temperature at the piston). The problem of 
integrating the equations in the case of turbulent mixing reduces to the numerical solution 
of one ordinary differential equation. 

The dimensionless variables are connected with the starting variables by the following 
relationships: 

t 0 , . 1 ~ 2  

. . . . .  p___q_o t 'O  (E).  p p~'6(~),p==pot~(~), T p~A1 

The first two equations coincide with (1.5), (1.6). In Eq. (1.7), we must set ~ = 0 
and, after transformations using (1.5), it can be represented in the form 

a ' ( ~  -- ~) -F 2 N / ( 7  -- t )  = 0 ,  (5.2) 

where a = [1/(7 - -  l)]in(~/SY). Further, we assume 

a '  = [1 / (7  - -  l ) ] [ ( l n a ) '  - -  7 ( l n 6 ) ' 1  ~ ,  [ - - W ' ( 7  - -  l ) l ( i n 6 )  ' .  (5.3) 

Substituting (5.3) into (5.2), using (1.6) we obtain an equation for the dimensionless ve- 
locity 5 : 

~'  = 2N/7. (5.4) 

Since the pressure at the piston is known, then boundary condition (i.i0) assumes the form 

i~o = go; ao = I .  ( 5 . 5 )  

Equations (5.4), (1.5), and (1.6) can be integrated and satisfy the boundary conditions (1.8), 
(5.5). The solution is represented in analytical form: 

K ~ = 2 N ( 7 § 2 4 7  K ~ - -  ~' §  . 
(7 § l ) (v  + 2N) ' 7 (A ~ -~- ~') ' 

~a 
2 -[- N [ g  1 -[- K~ (1 - -  K 1 ) ] '  

7 + t  
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~,~ = K1~3 ' ~ "~-~'-1[ X--~, o ~--2N/(2N+v) ( 5 . 6 )  
: v - ,  

2N ()~ __ ~'o), 
= ~ . o - - -  V 

2 ( L - -  %o ~V/(2N+V) 
. : n  = ~ - - ~  X 2 + N;~ [;~o + K2 (;~ - -  Lo)] - -  N k x ~ _ x o  ) [Ko(L - -  )~o) + Lo] )~. 

To e v a l u a t e  t h e  l e g i t i m a c y  o f  a p p r o x i m a t i o n  ( 5 . 3 ) ,  we c a l c u l a t e  t h e  r a t i o  ( i n  w ) ' / ( y  i n  ~) ' ,  
using solution (5.6). In the interval [Xo, l~], the following inequality holds: 

0 ~< ( ln~) ' /y ( ln5) '  ~< (2y - -  t)/27, ( 5 . 7 )  

i . e . ,  t h e  a s s u m p t i o n  o f  t h e  s m a l l n e s s  o f  t h e  n u m e r a t o r  i n  ( 5 . 7 )  i n  c o m p a r i s o n  w i t h  t h e  d e n o m -  
i n a t o r  i s  a l w a y s  t r u e ,  t h e  m o r e  s o  t h e  s m a l l e r  t h e  a d i a b a t i c  i n d e x  y .  

I n  t h e  a p p r o x i m a t e  s o l u t i o n ,  t h e  d e n s i t y  a t  t h e  p i s t o n ,  a s  i n  t h e  e x a c t  s o l u t i o n ,  r e -  
v e r t s  t o  i n f i n i t y .  The s o l u t i o n  o b t a i n e d  ( 5 . 6 ) ,  on t h e  b a s i s  o f  ( 5 . 7 ) ,  c a n  b e  u s e d  a l s o  f o r  
N < 0 .  Then  i t  i s  o f  i n t e r e s t  t o  c o m p a r e  i t  w i t h  L. I .  S e d o v ' s  e x a c t  s o l u t i o n  o f  t h e  p r o b -  
l e m  o f  a p l a n e  e x p l o s i o n .  To t h i s  e n d ,  we m u s t  s e t  N = --  0 . 5 .  H e r e  f o r  y = 1 . 4  we o b t a i n  
wo = 0 . 3 8 3 ;  i n  t h e  e x a c t  s o l u t i o n  f r o m  [ 6 ] ,  we h a v e  ~o = 0 . 3 2 5 .  A s o l u t i o n  f o r  c y l i n d r i c a l  
and  s p h e r i c a l  p i s t o n s ,  i n  t h e  a b o v e  a p p r o x i m a t i o n ,  c a n  be  o b t a i n e d  i n  a n a l y t i c a l  f o r m .  

6 .  S o l u t i o n  o f  t h e  P r o b l e m  o f  a P i s t o n  w i t h  M i x i n g .  The  e n e r g y  e q u a t i o n  ( 4 . 2 )  h a s  t h e  
f o r m  

~ l a ' ( ~  - -  ~) § 2NI(? --7 1)] = q' ;  ( 6 . 1 )  

q a=(L l_%o)~  ( , , - - i  ~ ) , / 2  ( a,)3/2 
�9 Y 

We make two assumptions. In the first place, we apply the approximate equality (5.3); in the 
second place, in the right-hand part of Eq. (6.1), we take the pressure ~ out from under the 
differential sign. We obtain 

= , ,  O, Lt t s /  j" 

This last equation can be integrated if the left-hand part is transformed using Eq. (1.6) : 

" F t  . ~ , + t  ~ = = ~ ( ~ , _ ~ o ) ~  _ 2/2 31~ 

The integration constant is determined from the condition at the boundary of the mixing re- 
gion: 

Using (1.5), (1.6), Eq. 
single function ~: 

(2N/y)( t - -%) q- 2/(? + t) - -  ~ = =~(~, - -  Xo)2[N~ + ({ - -  %)~'I'I~(~'i(L - -  4)) 3/2. 

This equation must be integrated in the mixing region Xo ~ X ~ Xx. 

From (6.3), there follows one boundary condition, 

~ = ~ l ,  ~' = 0 -  

The  other boundary condition is the piston itself: 

~,o = ~o. 

% = %,, q -- 0. (6.3) 

(6.2) can be reduced to an equation of the first order for the 

(6.4) 

(6.5) 
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To this condition there must be added the natural condition of a vacuum: 

5 = 0 w i t h  ~,o = ~o. 

An analysis of the behavior of the integral curves of Eq. (6.2) leads to a situation in 
which %0 = ~o # 0 5(%0) # 0. 

Setting %o = 0, we obtain a single integral curve with the expansion 

" -+ 2 ~2 

(I- 3 N ) ( i  --?,)+ 3 a 4 ~1 '~ 

which is the sought solution. In actuality, in this case, the expansion for the dimension- 
less density 5 is 

= CO~I- -~) /N .  

Consequently, 5(0) = 0. 

The integration must be carried out up to some point % = %z at which the condition (6.5) 
is satisfied. Since the quantity %z enters into the coefficients of the equation, its final 
determination can be carried out by iterations. 

After finding the dimensionless velocity ~, the remaining functions are calculated using 
the formulas 

8 - -  ~' ~ 1 5 , e  

where 5~, w~ are the values of the functions with % = %z. 

The solution between the front of the shock wave %3 = i and the front of the mixing %1 
is described by the formulas (5.6). 

Figures 4 and 5 illustrate the approximate solution of the problem for a piston, taking 
account of turbulent mixing. For purposes of comparison, the same figures show the solution 
without mixing. The case N = 0.5 and I, y = 5/3 is considered. The constant ~ = 0.133 was 
taken from [I]. As for the problem of Sec. 4, the effect of mixing leads to another distri- 
bution of the density and to determinacy in the position of the front of the shock wave. 
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STEADY-STATE PERTURBATIONS IN A LIQUID CONTAINING GAS BUBBLES 

V. V. Goncharov, K. A. Naugol'nykh, 
and S. A. Rybak 

UDC 532.529.5 

The problem of wave propagation in a liquid with gas bubbles, which is an example of a 
nonlinear dispersive medium, is usually treated in the approximation of weak nonlinearity 
and dispersion [i, 2], and a solution has been successfully obtained only in some special 
cases corresponding to a strong variation of the bubble radius [3]. In contrast to this, it 
is shown in this paper that a wider class of solutions is successfully found for stationary 
waves whicheorrespond to highly nonlinear pulsations of the bubbles. At the same time, pe- 
riodic solutions appear along with solutions of the soliton type, which correspond to the 
situation in which nonlinear and dispersive effects just compensate each other. 

One-dimensional acoustic waves in a bubble medium can be described by a system of linear 
acoustic equations which take account of the presence of gas bubbles: 

Op/Ot -i- poOvlOx = O; OvlOt -}- (ilpo)aplOx = O; P/Po ----- [ ( i  - -  z)/poc~] p -- nV (1 )  

and by the Rayleigh nonlinear equation for oscillations of a gas bubble 

RdeR/dt ~ + (3/2)(dR/dt)~ = (Po/Oo)l(Ro/R)~v-- 1] - -P /9 , .  (2) 

Since p = p(t, x), then R = R(t, x) and dR/dt = ~R/~t on the condition that one can neglect 
the convective nonlinear terms. Here Po, Po, and co are the equilibrium values of the den- 
sity, pressure, and speed of sound, respectively, in a liquid without bubbles; Ro is the 
equilibrium bubble radius; R is its instantaneous radius; y is the adiabatic exponent for 
the gas in the bubble; n is the number of bubbles per unit volume; z is the bubble concentra- 
tion; and p, p, v, and V are the variations in the density, pressure, speed of the liquid's 
particles, and the bubble volume, respectively. 

If one introduces the equilibrium bubble volume Vo = (4/3)wRo3[z = nVo, Vo +V = (4/3)~R 3] 
the eigenfrequency of the oscillations of the bubble ~o 2 = 3ypo/poRo 2, and also the dimen- 
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